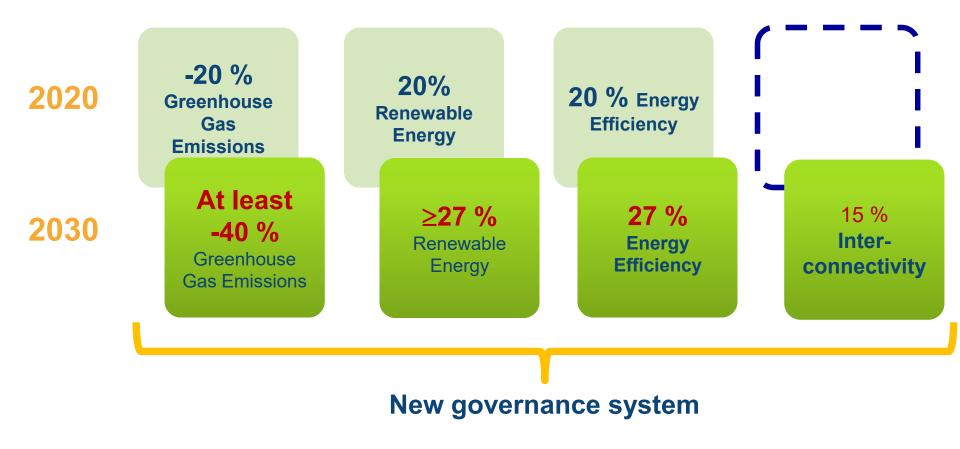


Foster Rail Energy and Environment

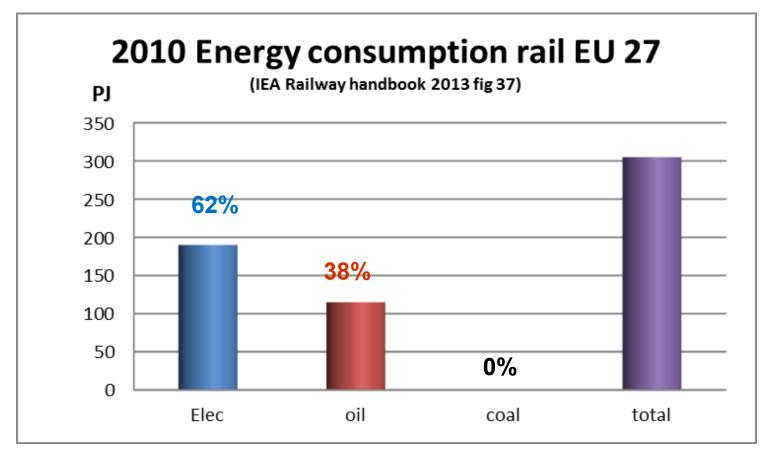
Černý Ondřej

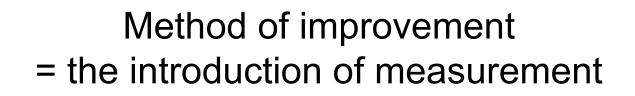
Department of Electrical and Electronical Engineering and Signalling in Transport



The UIC-CER Strategy of the European railway sector for 2030 and beyond

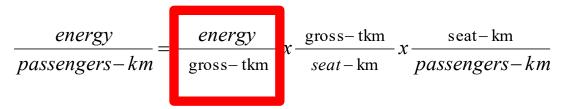
- targets for which UIC monitor and report progress:
- Climate Protection
- Energy Efficiency
- Noise and Vibrations
- Energy Efficiency
 - -30% pkm and tkm (2030)
 - -50% pkm and tkm (2050)


European Council (Oct 2014) conclusions: Short and Mid Term targets



EU27 rail (final) energy consumption

A cost of about 7 Billion EUR/year

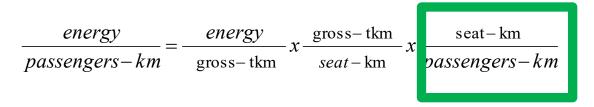


- No metered trains becomes "the exception" in Europe
- Since more than 10 years, German regulation makes it compulsory to have meters in electrical trains
- NSB, DSB, SJ, VR, RENFE, CFR Marva, PKP, MAV, OBB and CP started about 3 to 10 years ago
- The next 5 years:
 - SNCF will install about 3800 units
 - SBB and MAV (additionally) about 1800 units each
 - SNCB and ÖBB (additionally) about 1000 units each
 - NSB (additionally) about 450 units
 - VR (additionally): 150, CP (additionally): 34

Univerzita Pardubice Dopravní fakulta Iana Pernera

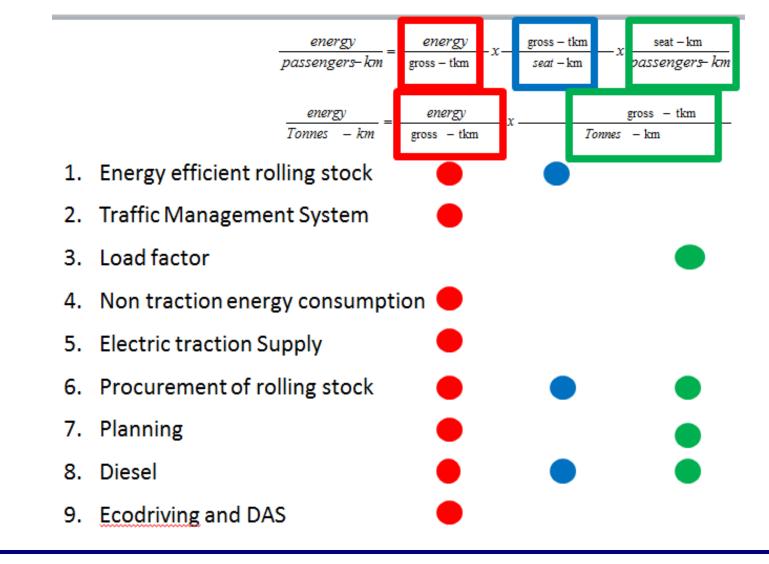
Drivers for energy efficiency

- On board technology:
 - traction chain, (pre) heating, (pre) cooling, lighting, ventilation, automatic closing of doors
- Regenerative braking
- Infrastructure:
 - efficiency of substations, transmission and overhead contact lines, optimization of speed profiles, energy storage
- traction
 - Diesel Electrical Hybrid


- Average mass per seat (mass of traction units included) varies from about 400 kg/seat to 1050 kg/seat
- Design of rolling stock
 - double stock, bogies between coaches,....
- Material:

Univerzita

- steel, aluminium, composite
- Type of train service:
 - HST, IC, local



Drivers for energy efficiency

- = inverse of load factor:
 - a KPI for the efficiency of any transport service

Energy and Environment

Univerzita Pardubice Dopravní fakulta

Energy efficient rolling stock

- Aerodynamics
 - Increasing the aerodynamic performance of rail vehichles can reduce energy consumption up to 8% for regio and 15% for HS (Bombardier)
- Engines:
 - Permanent Magnet Motors *improved motor efficiency*
- Fuels:
 - testing phase Liquid Natural Gas (LNG) instead of Diesel The First Main Line Liquid Gas-Turbine Locomotive: and became lower than EC2012 requirements
- Weight:
 - Composite/plastic bodyshells

Energy efficient rolling stock

Mechatronics

- on running gear (steering), this to include self adapting and adjusting capability (as per aerospace) to dramatically reduce wear
- Traffic Management System:
 - Reduction of losses in acceleration and braking sequences
 - Increase of network capacity through accurate driving recommendations

Procurement of rolling stock:

- TecRec100_001 / TS/ now to be converted to EN
 - Specification and verification of energy consumption for railway rolling stock
 - It provide a methodology to measure energy consumption for RS so that measurements over time of for differenct types of RS are comparable.
- Load Factor:
 - To implement different fares to improve occupation rates;
 - modular train composition;
 - Tariff differentiation as an incentive to travel outside the rush hours
- Non traction energy consumption
 - Natural ventilation / PV Systems / New HVAC/LED lighting/ Energy Efficiency in Planning (Influencing energy efficiency at an early stage) - optimised train sizes

UIC Survey of Energy Driver

the past 15 years

the future 15 years

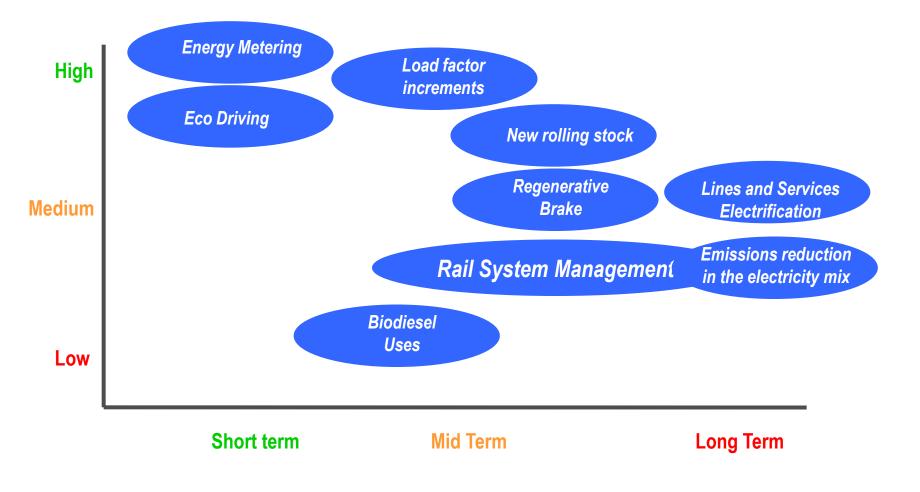
³CA ¹CA ³CA ³CA ⁴CA ⁴CA

Main driver: More efficient rolling stock

Attributable reduction of passenger specific energy consumption, 2012

- Load factor/empty trips management
- More efficient rolling stock
- Increase of regenerative braking
- Infrastructure energy efficiency management
- Eco-driving programs/use of DAS
- Heating, cooling and "train hotel loads" management

Other


Main driver: load factor

Secondary drivers

- More efficient rolling stock
- Ecodriving
- Regenerative braking
- infrastructure
- "hotel loads

Energy Management in Rail

Thank you for your attention

Černý Ondřej

Department of Electrical and Electronical Engineering and Signalling in Transport

> Studentská 95, 532 10 Pardubice ph: 466 036 427 E-mail: <u>ondrej.cerny@upce.cz</u>