CALCULATION OF THE MINIMAL LENGTH OF THE HIGH-SPEED LINE

Studentská vědecká konference

VRT – budoucnost české železnice IRICON 2020

10. 11. 2020

Content of the presentation

- Solution funded by project PosiTrans
- Introduction
- Simulation model
- Outputs and evaluations of the simulation
- Project Positrans
- Conclusion and future of the research

Introduction into the problematics

- Simulation as a tool for judgement of the track speed increasing.
- Pilot projects in CZ (Brno Břeclav, Kolín Poříčany, Ejpovice tunnel...)
- Input and output data for the model and finding evaluation criterions.

Simulation model

Simulation

• description of simulation scenarios

• definition of required simulation outputs

Simulation model

- Simulation model in SW OpenTrack.
- 50 block sections.
- *Very simple infrastructure.*
- One track for each trainset.
- *Just origin and destination station.*
- No slope, no curves.

Example of a simulation model.

Trainset data

- Basic Middle-Europe trainsets.
- Different maximal speed, weight, tractive effort...

Trainset	Maximal speed [km·h ⁻¹]	Weight [t]	Maximal tractive effort [kN]	Maximal power [kW]	Maximal acceleration [m·s ⁻²]
Š 109E	200	445	274	6 400	0.560
Railjet	230	437	300	6 400	0.627
Pendolino	230	384	200	3 920	0.461
ICE 3	330	463	300	8 000	0.581

Trainset		Acceleration	Deceleration		
	Time [s]	Distance [km]	Energy [kWh]	Time [s]	Distance [km]
Š 109E	189	6.59	276	94	2.62
Railjet	415	20.80	605	107	3.40
Pendolino	402	18.25	393	107	3.40
ICE 3	540	36.37	1,135	154	7.07

- Realistic save of the journey time.
- Increase of the specific traction energy consumption.
- Searching for a sub-optimal variant of the minimal length of the track section.

Track speed	Škoda 109 E + 7 coaches	Siemens Viaggio Comfort	Pendolino	ICE 3
160	4,66	4,63	5,76	3,97
180	6,51	6,62	8,32	5,29
200	9,21	9,481	11,97	7,04
230		24,21	21,65	10,51
250				13,58
330				43,44

Factors of the efficiency

Technical - track

- Slope profile and track alignment (track resistance).
- Speed profile.
- Track and station interlocking system.
- Electric traction system.

Technological

- Conception of the timetable.
- Conception of traffic control.
- Stopping strategy.
- Automated operation of the railway traffic.
- Utilization of a track capacity.

Technical – **vehicle**

- Maximum speed
- Traction efficiency.
- Vehicle resistance.
- Tractive characteristics.

Socioeconomics

- Size of an agglomeration.
- Distance and shape of agglomeration.
- Traffic demand.
- Economic power of the region or country.

Project PosiTrans

- Cooperation in Applied Research between the University of Pardubice and companies in the Field of Positioning, Detection and Simulation Technology for Transport Systems.
- Track transportation capacity and its determination using simulation.
- City Logistics and its modeling for securing sustainable development of the aglomeration.

Thank you for your attention.

Ing. Erik Tischer

Faculty of Transport Engineering University of Pardubice Erik. Tischer@upce.cz

