

KALKER'S COEFFICIENT c₁₁ AND ITS INFLUENCE ON THE DAMPING AND THE RETUNING OF A MECHANICAL DRIVE TORSION SYSTEM OF A RAILWAY VEHICLE

Faculty of mechanical engineering

Department of Automotive, Combustion Engine and Railway Engineering

Author: Ing. Vojtěch Dybala

Tutor: doc. Ing. Josef Kolář, CSc.

2.6.2021

Content

- Introduction
- Basic mathematical model
- Calculation results
- Conclusion
- References

Introduction

- Research of electromechanical phenomena in drive systems of high-power rail vehicles
 - Electromagnetically excited torsion oscillations identification and elimination
 - Influence of the adhesion phenomenon on torsion oscillations
 - identification and elimination
- Tools:
 - Basic calculation model natural frequencies and natural modes of oscillations
 - Complex simulation model simulation of a drive of a vehicle

1. Model with no wheel-rail contact implemented

Figure 3 Torsion system scheme - fully-suspended drive [3]

$$[J][\ddot{\varphi}] + [k][\varphi] = [M]$$

$$[J][\ddot{arphi}] + [k][arphi] = [\mathbf{0}] = \begin{bmatrix} ext{eigenvector} [arphi_{i,j}] \\ ext{eigenvalue vector} [\lambda_j] \end{bmatrix} \qquad f_j = rac{\sqrt{\lambda_j}}{2\pi}$$

2. Model with no wheel-rail contact implemented

$$T_1 = c_{11}a_{el}b_{el}Gs_X = C_1s_X = k_1s_X$$

Figure 4 Visualization of wheel-rail forces - top view

Figure 7 Wheel slip deduction [2]

Figure 5 Traction characteristic and adhesion characteristics of wheelset [4] [5] [6]

2. Model with no wheel-rail contact implemented

$$T_1 = c_{11}a_{el}b_{el}Gs_X = C_1s_X = k_1s_X$$

Figure 4 Visualization of wheel-rail forces - top view

Figure 6 Popovici's adhesion characteristics [7]

2. Model with no wheel-rail contact implemented

$$T_1 = c_{11}a_{el}b_{el}Gs_X = C_1s_X = k_1s_X$$

Figure 8 Torsion system scheme - fully-suspended drive

$$b_{W-R} = C_1 \frac{r_k^2}{v}$$
 $[J][\ddot{\varphi}] + [b][\dot{\varphi}] + [k][arphi] = [\mathbf{0}]$

Figure 4 Visualization of wheel-rail forces - top view

eigenvector
$$[m{arphi}_{i,j}]$$
 eigenvalue vector $[\lambda_j = -\delta_j \pm i\Omega_{dmp,j}]\,f_{dmp,j} = rac{\Omega_{dmp,j}}{2\pi}$

2. Model with no wheel-rail contact implemented

$$T_1 = c_{11}a_{el}b_{el}Gs_X = C_1s_X = k_1s_X$$

$$c_{11} = 4,984$$

Figure 8 Torsion system scheme - fully-suspended drive

Figure 9 Vehicle traction characteristic

$$[J][\ddot{arphi}] + [b][\dot{arphi}] + [k][arphi] = [0]$$

$$b_{W-R} = C_1 \frac{r_k^2}{v}$$

Table 2 Description of natural modes [3]

Figure 3 Torsion system scheme – fully-suspended drive [3]

$$f_j = \frac{\sqrt{\lambda_j}}{2\pi}$$

Order of	Respective	Dominant	Less significant
natural	natural	oscillations of a	oscillations
modes	frequency [Hz]	mass	
1.	0	Own free rotation	-
2.	6	Wheel-set	-
		towards	
		hollow shaft	
3.	57	Wheels of	-
		wheel-set	
4.	337	Wheel-set towards	Pinion towards rotor
		hollow shaft	
5.	572	Pinion towards	-
/		rotor	
6.	857	Hollow shaft joints	Wheel-set towards
			hollow shaft
			Gear wheel towards
			hollow shaft
7.	2403	Pinion towards	-
		rotor	
		Pinion towards	
		gear wheel	

$$c_{11} = 4.984 = C_1 \longrightarrow b_{W-R} = C_1 \frac{r_k^2}{v}$$

$$\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \longrightarrow f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi}$$

Figure 17 Damping as a function of velocity - c₁₁

Figure 18 Natural frequencies as a function of velocity - c_{11}

$$c_{11}/2 = 2,492 = C_1 \longrightarrow b_{W-R} = C_1 \frac{r_k^2}{v}$$

$$\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \longrightarrow f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi}$$

Figure 19 Damping as a function of velocity - c₁₁/2

Figure 20 Natural frequencies as a function of velocity - $c_{11}/2$

$$c_{11}/4 = 1,246 = C_1 \longrightarrow b_{W-R} = C_1 \frac{r_k^2}{v}$$

$$\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \longrightarrow f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi}$$

Figure 21 Damping as a function of velocity - c₁₁/4

Figure 22 Natural frequencies as a function of velocity - $c_{11}/4$

Conclusion

- The wheel-rail contact <u>influences</u> significantly behaviour of the torsion system specific natural frequencies via its damping capability:
 - Natural frequency and natural model of torsion oscillations related to oscillations of the wheel-set itself.
 - Natural frequency and natural model of torsion oscillations related to oscillations of the wheel-set towards the hollow shaft.
- The wheel-rail contact does not influnce the rest of the torsion system.

The practical meaning:

- For the research oriented on a wheel-set oscillations phenomenon It SHALL BE CONSIDERED.
- For the research oriented on the torsion oscillations of the rest of traction drive components it can be neglected.

References

- [1] T. Fridrichovský, "Studie disertační práce," Praha, 2017.
- [2] V. Dybala, M. Libenský, B. Šulc and C. Oswald, "Slip and Adhesion in a Railway Wheelset Simulink Model Proposed for Detection Driving Conditions Via Neural Networks," in SBORNÍK vědeckých prací Vysoké školy báňské Technické univerzity Ostrava, Řada strojní, Ostrava, 2018.
- [3] V. Dybala, "The electromagnetically excited resonance of the pinion in fully-suspended drive of a locomotive and its sensitivity on the torsion stiffness of the rotor shaft," in Sborník abstraktů konference STČ, Praha, 2021.
- [4] J. Kolář, Teoretické základy konstrukce kolejových vozidel, Praha: Česká technika nakladatelství ČVUT, 2009, p. 276.
- [5] J. Kolář, "Zborník prednášok II. XX. Medzinárodná konferencia Súčasné problémy v kolajových vozidlách," in Dynamika individuálního pohonu dvojkolí s nápravovou převodovkou, Žilina, 2011.
- [6] J. Kolář, "Problémy modelování vlivu svislých nerovností trati do dynamiky pohonu dvojkolí," Železničná doprava a logistika XI, pp. 38-47, 2015.
- [7] R. I. Popovici, Friction in Wheel Rail Contacts, Enschede, The Netherlands: University of Twente, 2010.

ACKNOWLEDGEMENT

This research has been realized using the support of The Technology Agency of the Czech Republic, programme National Competence Centres, project # TN01000026 Josef Bozek National Center of Competence for Surface Transport Vehicles This support is gratefully acknowledged.