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Research of electromechanical phenomena in drive systems
of high-power rail vehicles

Electromagnetically excited torsion oscillations — identification and elimination
Influence of the adhesion phenomenon on torsion oscillations
— identification and elimination

Tools:

Basic calculation model — natural frequencies and natural modes of oscillations
Complex simulation model — simulation of a drive of a vehicle
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Figure 2 A fully-suspended drive of a locomotive [2]
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Model with no wheel-rail contact implemented
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2. Model with no wheel-rail contact implemented

Kalker's linear theory:
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2. Model with no wheel-rail contact implemented

Kalker's linear theory:
Ty = €c11@¢ibeiGsy = C1Sx = k1Sx
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Figure 6 Popovici's adhesion characteristics [7]
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2. Model with no wheel-rail contact implemented

Kalker's linear theory:
Ty = €c11@¢ibeiGsy = C1Sx = k1Sx
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Figure 8 Torsion system scheme - fully-suspended drive
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2. Model with no wheel-rail contact implemented

Kalker's linear theory:
Ty = €c11@¢ibeiGsy = C1Sx = k1Sx
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Figure 8 Torsion system scheme - fully-suspended drive Figure 9 Vehicle traction characteristic
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Order of
natural
modes

Respective
natural
frequency [Hz]

Dominant
oscillations of a
mass

Calculation results

Table 2 Description of natural modes [3]
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Figure 3 Torsion system scheme -
fully-suspended drive [3]
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Torsion system damping as a function of vehicle speed
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Figure 17 Damping as a function of velocity
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... CalCulation results

Torsion system natural frequencies as a function of vehicle speed
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Figure 18 Natural frequencies as a function of
velocity - c,,
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Torsion system damping as a function of vehicle speed

Torsion system natural frequencies as a function of vehicle speed
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Figure 19 Damping as a function of velocity

Figure 20 Natural frequencies as a function of
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Torsion system damping as a function of vehicle speed
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Figure 21 Damping as a function of velocity
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... CalCulation results

Torsion system natural frequencies as a function of vehicle speed
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« The wheel-rail contact influences significantly behaviour of the torsion
system — specific natural frequencies — via its damping capability:
 Natural frequency and natural model of torsion oscillations related
to oscillations of the wheel-set itself.
 Natural frequency and natural model of torsion oscillations related
to oscillations of the wheel-set towards the hollow shaft.

« The wheel-rail contact does not influnce the rest of the torsion system.

The practical meaning:

* For the research oriented on a wheel-set oscillations phenomenon
It SHALL BE CONSIDERED.

* For the research oriented on the torsion oscillations of the rest of
traction drive components it can be neglected.
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