KALKER’S COEFFICIENT c_{11} AND ITS INFLUENCE ON THE DAMPING AND THE RETUNING OF A MECHANICAL DRIVE TORSION SYSTEM OF A RAILWAY VEHICLE

Faculty of mechanical engineering
Department of Automotive, Combustion Engine and Railway Engineering
Author: Ing. Vojtěch Dybala
2. 6. 2021
Content

- Introduction
- Basic mathematical model
- Calculation results
- Conclusion
- References
Introduction

- Research of electromechanical phenomena in drive systems of high-power rail vehicles
 - Electromagnetically excited torsion oscillations – identification and elimination
 - Influence of the adhesion phenomenon on torsion oscillations – identification and elimination

- Tools:
 - Basic calculation model – natural frequencies and natural modes of oscillations
 - Complex simulation model – simulation of a drive of a vehicle

Figure 2 A fully-suspended drive of a locomotive [2]
Basic mathematical model

1. Model with no wheel-rail contact implemented

\[
[J][\ddot{\varphi}] + [k][\varphi] = [M]
\]

\[
[J][\ddot{\varphi}] + [k][\varphi] = [0]
\]

- eigenvector \([\varphi_{ij}]\)
- eigenvalue vector \([\lambda_j]\)

\[
f_j = \frac{\sqrt{\lambda_j}}{2\pi}
\]
Basic mathematical model

2. Model with no wheel-rail contact implemented

Kalker’s linear theory:
\[T_1 = c_{11} a_{el} b_{el} G s_X = C_1 s_X = k_1 s_X \]
Basic mathematical model

2. Model with no wheel-rail contact implemented

Kalker’s linear theory:
\[T_1 = c_{11} a_{el} b_{el} G s_X = C_1 s_X = k_1 s_X \]

Figure 4 Visualization of wheel-rail forces - top view

Figure 6 Popovici’s adhesion characteristics [7]
2. Model with no wheel-rail contact implemented

Kalker’s linear theory:
\[T_1 = c_{11} a_{el} b_{el} Gs_X = C_1 s_X = k_1 s_X \]

Figure 4 Visualization of wheel-rail forces - top view

Figure 8 Torsion system scheme - fully-suspended drive
Basic mathematical model

2. Model with no wheel-rail contact implemented

Kalker’s linear theory:

\[T_1 = c_{11} a_e b_e G s_X = C_1 s_X = k_1 s_X \]

\[c_{11} = 4,984 \]

Figure 8 Torsion system scheme - fully-suspended drive

Figure 9 Vehicle traction characteristic

\[[U][\ddot{\phi}] + [b][\dot{\phi}] + [k][\phi] = [0] \]

\[b_{W-R} = C_1 \frac{r_k^2}{\nu} \]
Calculation results

Table 2 Description of natural modes [3]

<table>
<thead>
<tr>
<th>Order of natural modes</th>
<th>Respective natural frequency [Hz]</th>
<th>Dominant oscillations of a mass</th>
<th>Less significant oscillations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0</td>
<td>Own free rotation</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>6</td>
<td>Wheel-set towards hollow shaft</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>57</td>
<td>Wheels of wheel-set</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>337</td>
<td>Wheel-set towards hollow shaft</td>
<td>Pinion towards rotor</td>
</tr>
<tr>
<td>5.</td>
<td>572</td>
<td>Pinion towards rotor</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>857</td>
<td>Hollow shaft joints</td>
<td>Wheel-set towards hollow shaft Gear wheel towards hollow shaft</td>
</tr>
<tr>
<td>7.</td>
<td>2403</td>
<td>Pinion towards rotor</td>
<td>Pinion towards gear wheel</td>
</tr>
</tbody>
</table>
Calculation results

\[c_{11} = 4,984 = C_1 \]

\[b_{W-R} = C_1 \frac{r_k^2}{v} \]

\[\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \]

\[f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi} \]
Calculation results

\[c_{11/2} = 2.492 = C_1 \]

\[b_{W-R} = C_1 \frac{r_k^2}{v} \]

\[\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \]

\[f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi} \]

Figure 19 Damping as a function of velocity - \(c_{11/2} \)

Figure 20 Natural frequencies as a function of velocity - \(c_{11/2} \)
Calculation results

\[c_{11}/4 = 1,246 = C_1 \]

\[b_{W-R} = C_1 \frac{r_k^2}{v} \]

\[\lambda_j = -\delta_j \pm i\Omega_{dmp,j} \]

\[f_{dmp,j} = \frac{\Omega_{dmp,j}}{2\pi} \]

Figure 21 Damping as a function of velocity - \(c_{11}/4 \)

Figure 22 Natural frequencies as a function of velocity - \(c_{11}/4 \)
Conclusion

- The wheel-rail contact influences significantly behaviour of the torsion system – specific natural frequencies – via its damping capability:
 - Natural frequency and natural model of torsion oscillations related to oscillations of the wheel-set itself.
 - Natural frequency and natural model of torsion oscillations related to oscillations of the wheel-set towards the hollow shaft.

- The wheel-rail contact does not influence the rest of the torsion system.

The practical meaning:

- For the research oriented on a wheel-set oscillations phenomenon it SHALL BE CONSIDERED.
- For the research oriented on the torsion oscillations of the rest of traction drive components it can be neglected.
References

Acknowledgement

This research has been realized using the support of The Technology Agency of the Czech Republic, programme National Competence Centres, project # TN01000026 Josef Bozek National Center of Competence for Surface Transport Vehicles. This support is gratefully acknowledged.